1. Find Third Dividend Difference with arguments 2, 4, 9, 10 of the function f(x) = x³-2x.
Solution:-
The given function is f(x) = x³-2x
Given arguments - 2,4,9,10
Let x₀ = 2, x₁ = 4, x₂ = 9, x₃ = 10
∴ f(x₀) = f(2) = 2³ - 2×2 = 4
∴ f(x₁) = f(4) = 4³ - 2×4 = 56
∴ f(x₂) = f(9) = 9³ - 2×9 = 711
∴ f(x₃) = f(10) = 10³ - 2×10 = 980
∴ First Dividend Difference -
i) Δₓ₁f(x₀) = f(x₀,x₁) = {f(x₁) - f(x₀)}/(x₁ - x₀) = (56-4)/(4-2) = 26
ii) Δₓ₂f(x₁) = f(x₁,x₂) = {f(x₂) - f(x₁)}/(x₂ - x₁) = (711-56)/(9-4) = 131
iii) Δₓ₃f(x₂) = f(x₂,x₃) = {f(x₃) - f(x₂)}/(x₃ - x₂) = (980-711)/(10-9) = 269
∴ Second Dividend Difference -
i) Δ₍â‚“₁,â‚“₂₎f(x₀) = f(x₀,x₁,x₂) = {f(x₁,x₂) - f(x₀,x₁)}/(x₂ - x₀) = (131-26)/(9-2) = 15
ii) Δ₍â‚“₂,â‚“₃₎f(x₁) = f(x₁,x₂,x₃) = {f(x₂,x₃) - f(x₁,x₂)}/(x₃ - x₁) = (269-131)/(10-4) = 23
∴ Third Dividend Difference -
Δ₍â‚“₁,â‚“₂,â‚“₃₎f(x₀) = f(x₀,x₁,x₂,x₃) = {f(x₁,x₂,x₃) - f(x₀,x₁,x₂)}/(x₃ - x₀)
= (23-15)/(10-2) = 1.Answer.
Example: Use Euler’s procedure to find y(0.4) from the differential equation
Sol:
Given equation dy/dx = xy
Here
We break the interval in four steps.
So that
By Euler’s formula
For n=0 in equation (i) we get, the first approximation
n=1 in equation (i) we obtain
Put=2 in equation (i) we get, the third approximation
Put n=3 in equation (i) we get, the fourth approximation
Hence y(0.4) =1.061106.
0 Comments
Post a Comment